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ABSTRACT: This study introduces a novel method for comparing vertical thermodynamic profiles, focusing on the atmo-
spheric boundary layer, across a wide range of meteorological conditions. This method is developed using observed
temperature and dewpoint temperature data from 31 153 soundings taken at 0000 UTC and 32308 soundings taken at
1200 UTC between May 2019 and March 2020. Temperature and dewpoint temperature vertical profiles are first interpo-
lated onto a height above ground level (AGL) coordinate, after which the temperature of the dry adiabat defined by the
surface-based parcel’s temperature is subtracted from each quantity at all altitudes. This allows for common sounding fea-
tures, such as turbulent mixed layers and inversions, to be similarly depicted regardless of temperature and dewpoint tem-
perature differences resulting from altitude, latitude, or seasonality. The soundings that result from applying this method
to the observed sounding collection described above are then clustered to identify distinct boundary layer structures in the
data. Specifically, separately at 0000 and 1200 UTC, a k-means clustering analysis is conducted in the phase space of the
leading two empirical orthogonal functions of the sounding data. As compared to clustering based on the original vertical
profiles, which results in clusters that are dominated by seasonal and latitudinal differences, clusters derived from trans-
formed data are less latitudinally and seasonally stratified and better represent boundary layer features such as turbulent
mixed layers and pseudoadiabatic profiles. The sounding-comparison method thus provides an objective means of catego-
rizing vertical thermodynamic profiles with wide-ranging applications, as demonstrated by using the method to verify
short-range Global Forecast System model forecasts.
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1. Introduction

The history of vertical soundings, which provide meteoro-
logical observations through parts of Earth’s atmosphere, be-
gins in the nineteenth century. The first recorded vertical
sounding was taken in 1894 by Abbott Lawrence Rotch with
a kite that carried a lightweight thermograph (Blue Hill
Observatory and Science Center 2021). This initiated regular
atmospheric soundings of air temperature, dewpoint tempera-
ture (hereafter simply temperature and dewpoint, respectively),
and pressure, as well as wind speed and direction. Organizations
such as the U.S. Weather Bureau and Germany’s Aeronautical
Observatory continued using kite soundings into the 1930s,
while vertical soundings using aircraft and free-flying balloons
became more common in the 1930s and 1940s. However, there
were downsides to using balloons and kites, as kites could only
reach altitudes of around 4 km above ground level and bal-
loons had to be recovered to obtain the recorded data (Stith
et al. 2018).

These pitfalls led to the development of radio-transmitting
instrument packages attached to balloons called radiosondes.
Radiosondes observe temperature, dewpoint, and pressure in

the lower atmosphere and radio these data back to a remote re-
ceiving station. The instrument packages that can also record
and transmit horizontal wind data are known as rawinsondes
(Stith et al. 2018). Routine upper-air observations, which collect
data using rawinsondes in the troposphere and lower to middle
stratosphere, are taken at fixed locations across the globe up to
two times per day, typically at 0000 and 1200 UTC.

The wide range of locations from which the atmosphere is
sampled by rawinsondes ensures that rawinsonde observations
can sample many different atmospheric phenomena. For exam-
ple, precipitation is often accompanied by near-saturation and a
pseudoadiabatic vertical temperature profile (Fig. 1a). Clear
skies, cool temperatures, and calm winds at night can lead to
the formation of a near-surface radiation inversion (Fig. 1b).
Strong surface sensible heating can result in the formation of
deep turbulent eddies and associated turbulent mixed layer
(Fig. 1c). Finally, frontal inversions separate cooler, drier air
masses near the surface from warmer, moister air masses above
(Fig. 1d). These features are associated with distinct tempera-
ture and dewpoint profile shapes on skew T–lnp diagrams that
are functions of the features themselves and of the synoptic me-
teorological conditions within which they occur.

Previous studies have introduced subjective and objective
methods for clustering vertical soundings. Subjective cluster-
ing methods include those by geographic location (Evans et al.
2018), surface-based instability magnitude (Coniglio et al.
2013; Evans et al. 2018), and the presence of a capping inversion
(Coniglio et al. 2013; Nevius and Evans 2018), with these meth-
ods subsequently used to better understand numerical model
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biases in such environments. Among objective clustering meth-
ods, methods previously applied include self-organizing maps
(SOMs; Kohonen 1995) and k-means clustering (Forgy 1965;
Lloyd 1982). For example, SOMs have been used to cluster verti-
cal soundings in proximity to distinct thunderstorm modes (e.g.,
tornadic versus nontornadic supercells; Nowotarski and Jensen
2013), and ozone mixing ratio profiles (Jensen et al. 2012),
whereas k-means clustering has been used to cluster vertical
soundings to identify distinct Amazonian meteorological regimes
(Giangrande et al. 2020). These methods have demonstrated the
ability to identify distinct thermodynamic-profile structures when
there is little variation in the sounding climatology. However, it is
still unclear whether these methods can efficiently identify dis-
tinct thermodynamic profile structures in the presence of more
substantial variability in the sounding climatology.

This study introduces a novel objective method to account
for climatological variability in large samples of atmospheric
boundary layer vertical thermodynamic profiles by subtract-
ing the values of the dry adiabat that extends upward from
the surface parcel’s air temperature from the temperature and
dewpoint profiles. The resulting vertical profiles are hereafter
referred to as transformed profiles. This method largely pre-
serves the vertical profiles’ shapes, which represent unique at-
mospheric processes that can occur throughout the year (and
thus be associated with a wide range of temperatures and
dewpoints) at any geographic location. The transformed pro-
files are then categorized into groups via k-means clustering
to identify similar profiles. The hypothesis guiding this study is

that this sounding transformation method removes sufficient
background environmental variability to enable the distinct
structures depicted by vertical thermodynamic profiles}here
focusing on the atmospheric boundary layer}to be objectively
identified and clustered across a large, highly variable sound-
ing climatology.

The rest of this study is structured as follows. Section 2 out-
lines the data analyzed before discussing the transformation,
data compression, and clustering methodology used to classify
soundings. Section 3 demonstrates the efficacy of this method-
ology for a large set of observed soundings from across the
United States during May 2019–March 2020. Section 4 illus-
trates how the classification and clustering method can be used
to document environment-specific biases in numerical model–
forecast vertical thermodynamic profiles. Finally, section 5 sum-
marizes the study’s key findings and outlines and further poten-
tial uses of the objective sounding classification method.

2. Data and methods

The data used in this study are observed temperature and
dewpoint vertical profiles from 112 routine upper-air observa-
tion stations across the United States, Canada, and Mexico
launched by the National Oceanic and Atmospheric Adminis-
tration (NOAA), Environment and Climate Change Canada,
and Servicio Meteorológico Nacional, respectively. The data
cover the period from 1200 UTC 7 May to 1200 UTC 31 March
2020, excluding 0000 UTC 8 June–1200 UTC 20 June 2019 and

FIG. 1. Observed skew T–lnp diagrams (temperature in 8C in solid red lines; dewpoint temperature in 8C in solid
blue lines; horizontal wind speed and direction in barbs, with half barb 5 5 kt, barb 5 10 kt, and pennant 5 50 kt,
where 1 kt ’ 0.51 m s21) constrained to below 700 hPa to depict examples of boundary layer structures. (a) A moist
sounding profile at Slidell, LA, at 0000 UTC 13 Jul 2019 with a nearly pseudoadiabatic layer above 850 hPa; (b) a radi-
ation inversion extending from the surface to 980 hPa at Jackson, MS, at 1200 UTC 15 Sep 2019; (c) a vertically mixed
layer extending from the surface to 915 hPa at Brownsville, TX, at 0000 UTC 22 Jul 2019; and (d) a frontal inversion
over the 950–925-hPa layer at Buffalo, NY, at 0000 UTC 4 Oct 2019.

WEATHER AND FORECAS T ING VOLUME 381144

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:22 PM UTC



0000 UTC 12 October–0000 UTC 1 November 2019 due to
gaps in the Storm Prediction Center (SPC) sounding archive
used in this study, and include N00

soundings 5 31 153soundings at
0000 UTC and N12

soundings 5 32 308soundings at 1200 UTC.
These data are obtained from SPC’s internal archive in JSON
format, a format which is easy to read using Python’s pandas
(Pandas Development Team 2023) package and for which we
previously developed a data processing and visualization work-
flow. The large data volume limited the amount of data which
could be transferred from SPC’s internal systems to those
at UWM used to process and analyze the data, such that only
11 months of data are used in this study. However, since these
data capture a nearly complete annual cycle, we believe the cli-
matological sounding structures would not change if additional
years are included.

Observed soundings are first interpolated onto a common
height above ground level (AGL) vertical grid with uniform
vertical grid spacing of 100 m. This accounts for differences in
altitudes between stations (e.g., Fig. 1 of Fovell and Gallagher
2020). The new grid’s vertical extent is restricted to the lower
troposphere (below 3 km AGL) given its importance to sur-
face sensible weather, atmospheric stability, and particulate
transport. This results in a grid with Nz 5 31 vertical levels.
Next, the values of the dry adiabat extending upward from
the surface parcel’s air temperature are subtracted from each
sounding’s temperature and dewpoint profiles at all vertical
levels (Fig. 2). The dry adiabat is chosen for this transforma-
tion because of its constant lapse rate (9.8 K km21) no matter
the altitude or moisture content. The transformed temperature
profile is directly related to parcel stability; e.g., a negatively

sloped transformed temperature profile inherently indicates
that an air parcel lifted from the altitude at which the
negative slope begins is absolutely unstable. As in Fig. 2,
wherein Tallahassee, Florida, and El Paso, Texas, soundings
are characterized by turbulent mixed layers despite substan-
tially different station altitudes and surface meteorological
conditions, these transformations retain fundamental sounding
shapes while reducing the variability that results from altitude,
latitudinal, and seasonal differences between soundings. The
raw soundings in this plot are limited to 500 hPa to focus on
lower-tropospheric features. Allowing these examples to extend
to 500 hPa ensures that the lowest 3 km AGL are included
within each sounding (e.g., 3 km AGL is approximately
600 hPa at El Paso in Fig. 2c) and provides context for the
grid transformation, i.e., allows for readers to see which data
are included and not included after this transformation. Here-
after, the untransformed data are referred to as the raw data,
whereas the transformed data are referenced as such.

The raw and transformed temperature and dewpoint data
are arranged into an input data matrix X, which has dimensions
N00

soundings 3 (2Nz) for 0000 UTC data and N12
soundings 3 (2Nz) for

1200 UTC data; note that the factor of 2 on Nz represents the
number of variables in the input data (temperature and dew-
point). 0000 and 1200 UTC are considered separately given the
influence of the diurnal cycle on near-surface conditions. The
mean thermodynamic profile (computed by averaging over all
samples in X) is subtracted from each sample profile prior to
further analysis so that the subsequent clustering is performed on
anomalous profiles. Next, X is subjected to an empirical orthogo-
nal function (EOF; Obukhov 1947; Lorenz 1956; Davis 1976)

FIG. 2. Observed skew T–lnp diagrams from (a) Tallahassee, FL, at 0000 UTC 31 May 2019 and (c) El Paso, TX, at 0000 UTC 26 Jul
2019. The temperature and dewpoint are depicted in red and blue lines, respectively. (b),(d) As in (a) and (c), but transformed to a height
AGL vertical coordinate with the surface temperature’s dry adiabat [black line in (a) and (c)] subtracted from the temperature and dew-
point at all altitudes.
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analysis to reduce the input data’s dimensionality (e.g., Monahan
et al. 2009). Specifically, X is decomposed as X 5 UVT, where V

is a (2Nz) 3 (2Nz) orthogonal matrix of EOFs, U 5 XV is
the matrix of the principal components (PCs) which has the
same size as X and contains the uncorrelated series of the
magnitudes associated with each EOF pattern across the in-
put soundings, and the superscript T indicates the matrix’s
transpose. The loadings V are found so that the variance
accounted for by the leading K EOFs (ordered by decreas-
ing explained variance; Wilks 2019) is maximized and the re-
sidual variance is minimized.

For the raw data, the leading EOF mode is well separated
from the remaining EOF modes in the 0000 and 1200 UTC
data, with the leading EOF mode accounting for over 80% of
the variance in the data (solid lines in Fig. 3). Thus, only the
leading EOF is hereafter retained for the raw data. Interest-
ingly, despite representing distinct times within the diurnal cy-
cle, the variance explained by each of the leading five EOF
modes is nearly identical between the raw data at 0000 and
1200 UTC (Fig. 3). This indicates that the dominant mode of
variability in the data is identical between the two times,
which we believe to be associated with airmass properties that
are highly variable across the sounding climatology (which
covers nearly a full year and over 508 of latitude) given the
cluster-mean profiles presented in section 3a.

Conversely, for the transformed data, the leading two EOF
modes are well-separated from the remaining EOF modes in
the 0000 and 1200 UTC data (dashed lines in Fig. 3). Thus, the
leading two EOFs are hereafter retained for the transformed
data. For the data considered in this study, the sounding trans-
formation leads to a lower variance in the transformed data’s
first EOF at each time but a higher variance in the trans-
formed data’s second EOF at each time as compared to the
corresponding raw soundings’ EOFs (solid versus dashed lines
in Fig. 3), which must result from the sounding transformation
process removing variance associated with the variable airmass
properties represented in the input sounding data.

Next, the data from each dataset (raw and transformed
data) at each observation time (0000 and 1200 UTC) are sub-
jected to k-means clustering in the corresponding EOF-1
phase space for the raw data and the EOF-1–EOF-2 phase
space for the transformed data. The k-means clustering is a
nonhierarchical method for grouping data, wherein data can
be reassigned between clusters as the analysis is performed,
into a user-specified number of clusters (Forgy 1965; Lloyd
1982; Wilks 2019). In this method, an initial clustering is
formed based on input points’ distances from randomly as-
signed initial points. The algorithm then computes cluster
centroids, calculates the Euclidean distance of each data point
from the different cluster centroids, and assigns the data to
the cluster with the smallest Euclidean distance between the
data point and its centroid. This process is iterated until the
distance from each data point to its respective cluster centroid
is minimized (Wilks 2019). The efficiency of this clustering
technique is represented by silhouette scores, which measure
the mean intracluster Euclidean distances compared to the
mean intercluster Euclidean distances. The silhouette score
can be as large as 1, which represents a perfect efficiency of
the clustering method. For both the 0000 and 1200 UTC anal-
yses using the raw and transformed sounding data, k 5 2
represents the number of clusters (in the range of 2–10)
that produces the highest cluster-average silhouette score
(Rousseeuw 1987) and lowest number of negative silhou-
ette scores; i.e., two clusters are optimal for maximizing inter-
cluster variance and minimizing intracluster variance (Fig. 4).

For the raw data, the resulting cluster membership is
strongly influenced by the time of the year, with Cluster-1
soundings most prevalent during the warm season and
Cluster-2 profiles most prevalent during the cold season
(Figs. 5a,b). This is further explored in section 3a.

Because of the large variance explained by EOF-1 (Fig. 3),
how well the transformed data correspond to EOF-1 is the
primary distinguishing characteristic between Clusters 1 and
2 (Figs. 5c,d). This is most notable for the 0000 UTC data
(Fig. 5c), for which EOF-1 explains almost 70% of the input
data’s variance (Fig. 3), and less notable for the 1200 UTC
data (Fig. 5d), for which EOF-2 explains slightly less than
50% of the input data’s variance (Fig. 3). To further examine
a possible role of variability associated with the EOF-2 mode
in our classifications for the transformed dataset, we repeat
the paper’s analyses in a phase space in which the EOF axes
are normalized by the standard deviations of their associated
PCs. The normalization changes the Euclidean distance in the
EOF-1–EOF-2 space used in assigning datapoints to clusters us-
ing k-means clustering and thus changes the resulting cluster pop-
ulations. However, as described in the supplemental material,
these changes are minor in nature, such that the standard process
of not normalizing the EOF axes is retained herein.

3. Classification

a. Raw versus transformed data

Clusters obtained using the raw 0000 UTC temperature
and dewpoint observations are characterized by similarly

FIG. 3. Percentage of variance accounted for by the five leading
EOFs for raw and transformed sounding data at 0000 and 1200 UTC.
The heuristic error bars (North et al. 1982) represent the PC-variance
uncertainty associated with each EOF. Note that the lines for the
0000 and 1200 UTC raw data largely overlap each other.
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shaped temperature and dewpoint profiles between the sur-
face and 3 km AGL (Figs. 6a,c). The primary difference be-
tween these two clusters lies with their surface airmass
characteristics: the Cluster-1 (Fig. 6a) mean surface tempera-
ture and dewpoint are approximately 228 and 138C, respec-
tively, whereas the corresponding Cluster-2 (Fig. 6c) mean

values are approximately 218 and 288C. These differences
stem from latitudinal (Fig. 7) and temporal (Fig. 8) variabil-
ity between the cluster populations: the colder Cluster-2
profiles predominantly occur in climatologically colder loca-
tions such as Canada and the United States Intermountain
West (Fig. 7a) on the shoulders of the warm season and

FIG. 4. (a),(b) The cluster-average silhouette score (nondimensional) and (c),(d) total number of negative points
for k 5 2 through k 5 10 for the 0000 UTC (solid) and 1200 UTC (dashed) (left) raw and (right) transformed datasets.

FIG. 5. Scatterplots of k-means cluster identification in the EOF-1 phase space for (a) 0000 and (b) 1200 UTC raw
data and in the EOF-1–EOF-2 phase space for (c) 0000 UTC and (d) 1200 UTC transformed data.
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during the cold season (Fig. 8) whereas the warmer Cluster-1
profiles predominantly occur in climatologically warmer and
moister locations such as the southeastern United States (Fig. 7a)
during the warm season (Fig. 8).

By contrast, the cluster-mean profiles derived from the trans-
formed 0000 UTC data (Figs. 6b,d) indicate common boundary
layer structures. Cluster 1 (Fig. 6b) depicts a vertically mixed
layer, characterized by the cluster-mean transformed temperature

FIG. 6. Cluster-mean temperature (red lines) and dewpoint (blue lines) for (a),(b) Cluster 1 and (c),(d) Cluster 2
for the (left) raw and (raw) transformed observed profiles for the 0000 UTC dataset. The semitransparent shading
centered on each cluster-mean profile represents the interquartile range (25th–75th percentile) of the data.

FIG. 7. The geographic distributions of soundings by cluster in the (a),(c) raw and (b),(d) transformed data at (top)
0000 UTC and (bottom) 1200 UTC. Each sounding location is denoted with a bar graph indicating the number of
soundings per cluster at that location, with Cluster-1 soundings denoted in red and Cluster-2 soundings denoted
in blue.
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approximately equal to zero (intrinsically representing a dry adia-
batic lapse rate) to ;1.25 km AGL. Although these soundings
predominantly occur in the U.S. Intermountain West (Fig. 7b)
where strong surface sensible heating of the climatologically arid
surface readily facilitates turbulent vertical mixing during the
warm season, Cluster 1 also contains soundings from across North
America. Conversely, Cluster 2 (Fig. 6d) depicts a nearly pseu-
doadiabatic profile, as characterized by the cluster-mean trans-
formed temperature increasing by approximately 48C km21

(roughly the difference between the dry and pseudoadiabatic
lapse rates below 3 kmAGL during the warm season) and a dew-
point depression of approximately 48C near the surface. These
soundings are predominantly located near major coastlines and in
eastern North America, locations at which moisture availability is
greater during the warm season. Note, however, that these clus-
ters are less temporally stratified than are their counterparts
derived from raw sounding data (Fig. 8). In all, the sounding-
transformation process appears to reduce the extent to which
soundings are clustered based by latitude and the annual cycle.

Similar results are obtained for the observed 1200 UTC
soundings. For the raw data, approximately 92% of the sound-
ings have the same cluster assignment as the following (i.e., 12 h
later) 0000 UTC data. In fact, the cluster-mean composite pro-
files (cf. Figs. 6a,c and 9a,c) and the geographical (Figs. 7a,c)
and temporal (Fig. 8) distributions associated with the 0000 and
1200 UTC clusters based on raw data are very similar. Slight
differences between the cluster composites between the 1200
and 0000 UTC data (cf. Figs. 6a,c and 9a,c) (most notably, lower
composite-mean surface temperatures with the 1200 UTC data)
are likely a function of the diurnal cycle. Altogether, the clusters
derived from 1200 UTC raw soundings are primarily stratified
by latitude and time of year, as was true for the clusters derived
from 0000 UTC raw soundings.

The sounding transformation process applied to 1200 UTC
soundings is not as effective in reducing the latitudinal and
seasonal stratification evident in the raw data as it is for
0000 UTC soundings. Here, Cluster-1 soundings are prefer-
entially found at higher latitudes (Fig. 7d) in the cold season
(Fig. 8, bottom panel), whereas Cluster-2 soundings are
preferentially found at lower latitudes (Fig. 7d) and domi-
nate the warm-season sounding population (Fig. 8, bottom
panel). The cluster-mean profiles at this time are primarily
distinguished by the parcel stability below 1 km AGL, with
the rapid increase in cluster-mean transformed temperature
with height over the 0–1 km AGL layer in Cluster 1 imply-
ing that parcels lifted from within this layer are more stable
than their Cluster-2 counterparts (Figs. 9b,d). This is consis-
tent with stronger near-surface radiative cooling at higher
latitudes in the Cluster 1 population. Because of the re-
duced effectiveness in reducing the latitudinal and seasonal
stratification as compared to the 0000 UTC data, only 26%
of 1200 UTC soundings have the same cluster assignment as
do those at the same observing location taken 12 h later at
0000 UTC (not shown).

b. Thunderstorm-supporting environments

Thunderstorm-supporting environments are examined to
demonstrate the efficacy of using the sounding transformation
and clustering method on soundings collected in a narrower
latitudinal range (the conterminous United States) and por-
tion of the year (primarily the warm season) than in the full
sounding dataset. This is done by using NOAA’s Storm Pre-
diction Center (SPC) 1200 UTC Day-1 convective outlooks.
Observed soundings were filtered to only retain those located in
an outlook category of general thunderstorm, representing a
10% of greater probability of thunderstorms between 1200 UTC

FIG. 8. Sounding counts for the (top) 0000 UTC and (bottom) 1200 UTC observed soundings. In both panels, red
lines denote Cluster 1 whereas orange lines denote Cluster 2; solid lines indicate raw data whereas dot–dashed lines
indicate transformed data.
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on that day and 1159 UTC on the next day (Storm Prediction
Center 2022), and higher. Thus, the 0000 UTC soundings corre-
spond to the Day-1 outlook issued on the preceding day,
whereas the 1200 UTC soundings correspond to the Day-1 out-
look issued at 1200 UTC on the same day. This filtering retains
6082 (19.5%) of the 0000 UTC soundings and 5815 (18%) of the
1200 UTC soundings. After subsetting these data, the data
transformation, compression, and clustering methods out-
lined in section 2 for the full dataset are replicated for this
subset, with a silhouette-score analysis again supporting re-
taining two clusters for both the raw and transformed data at
both analysis times (not shown).

As with the full sounding dataset, the cluster-mean vertical
profiles for the clusters derived from raw 0000 UTC sounding
data have similar shapes, but with substantially different cluster-
mean surface temperatures and dewpoints (Figs. 10a,c).
The warmer, moister Cluster 1 has a mean surface tem-
perature of 288C and a mean surface dewpoint of 188C,
whereas the colder, drier Cluster 2 has a mean surface temper-
ature of 178C and a mean surface dewpoint of 48C. Further,
Cluster-1 soundings are preferentially located in the southeast-
ern United States (Fig. 11a) and preferentially occur during
the warm season (Fig. 12, top panel), whereas Cluster-2 sound-
ings are preferentially located in the northwestern United
States (Fig. 11a) and preferentially occur during the cold
season (Fig. 12, top panel). Altogether, this suggests that
clusters derived from raw sounding data are again primar-
ily latitudinally and seasonally stratified despite the re-
duced variability within the input data.

Conversely, the transformed 0000 UTC data indicate the
same distinct boundary layer structures as for the full 0000 UTC
transformed dataset (cf. Figs. 6b,d and 10b,d), with Clusters 1

and 2 depicting a vertically mixed layer and nearly pseudoa-
diabatic profile, respectively. The geographic and temporal
distributions of soundings within these clusters are largely
unchanged from the full 0000 UTC transformed dataset, with
Cluster-1 soundings most prevalent in the U.S. Intermoun-
tain West (Fig. 11b) and the warm season (Fig. 12, bottom
panel) and Cluster-2 soundings most prevalent near coast-
lines and in the eastern United States (Fig. 11b) and less pref-
erentially occurring during the warm season (Fig. 12, bottom
panel).

The correspondence of the cluster-mean profiles for the
raw and transformed 0000 UTC soundings in thunderstorm-
supporting regions to those for the full data (section 3a) result
from a large overlap in the cluster populations. For soundings
in the full and thunderstorm-supporting environment sets,
73% of the raw data and 61% of the transformed data have
the same cluster assignments. Altogether, even when sound-
ings are manually subset over a narrower latitudinal and sea-
sonal range, the sounding-transformation process appears to
reduce the latitudinal and seasonal stratification within clus-
ters derived from these data, allowing the clustering process
to better identify distinct boundary layer structures within the
data.

As is true for clusters derived from the raw 0000 UTC sound-
ing data in thunderstorm-supporting environments, clusters
derived from raw 1200 UTC sounding data in thunderstorm-
supporting environments are largely distinguished by their
cluster-mean surface temperatures and dewpoints (Figs. 13a,c).
Specifically, the cluster-mean surface temperature and dewpoint
for Cluster 1 are 228 and 188C, respectively, whereas the cluster-
mean surface temperature and dewpoint for Cluster 2 are 108
and 78C, respectively. In fact, 91% of the soundings have the

FIG. 9. As in Fig. 6, but for 1200 UTC data.
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same cluster assignment as the following (i.e., 12 h later) 0000
UTC data, emphasizing the degree to which the two cluster pop-
ulations overlap. Thus, as at 0000 UTC, these differences primar-
ily result from latitudinal and temporal variability in the cluster
populations: Cluster-1 soundings are preferentially located
in the southeastern United States (Fig. 11d) and primarily
occur in summer (Fig. 12, bottom panel) whereas Cluster-2
soundings are preferentially located in the northwestern

United States (Fig. 11d) and primarily occur during the cold
season (Fig. 12, bottom panel).

Likewise, as is true for clusters derived from the full 1200 UTC
transformed soundings, the sounding-transformation process is
less effective in reducing the latitudinal and seasonal stratification
evident in the raw data in thunderstorm-supporting environments
as it is for 0000 UTC soundings. Composite-mean transformed
temperature and dewpoint profiles are similar between Clusters 1

FIG. 11. As in Fig. 7, but only for vertical thermodynamic profiles contained within thunderstorm-supporting envi-
ronments determined from SPC general thunderstorm areas (forecasts of which only cover the conterminous United
States).

FIG. 10. As in Fig. 6, but only for vertical thermodynamic profiles contained within thunderstorm-supporting envi-
ronments, as assessed by whether they are located within the Storm Prediction Center’s 1200 UTC Day-1 Convective
Outlook valid for the time at which each sounding is observed.
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and 2 (Figs. 13b,d), with Cluster 1 having slightly greater
stability for parcels lifted from the lowest 1 km AGL as com-
pared to Cluster 2. Cluster-1 soundings preferentially are
found in the north-central United States (Fig. 11d) during the
cold season (Fig. 12, bottom panel), whereas Cluster-2 sound-
ings preferentially are found at lower latitudes (Fig. 11) during

the warm season (Fig. 12, bottom panel). Because of the re-
duced effectiveness in reducing the latitudinal and seasonal
stratification as compared to the 0000 UTC data, only 45% of
1200 UTC soundings in thunderstorm-supporting environ-
ments have the same cluster assignment as those at the same
observing location taken 12 h later at 0000 UTC (not shown).

FIG. 12. As in Fig. 8, but only for vertical thermodynamic profiles contained within thunderstorm-supporting
environments.

FIG. 13. As in Fig. 10, but only for vertical thermodynamic profiles contained within thunderstorm-supporting envi-
ronments determined from SPC general thunderstorm areas (forecasts of which only cover the conterminous United
States).
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As with the 0000 UTC data, the correspondence of the
cluster-mean profiles for the raw and transformed 1200 UTC
soundings in thunderstorm-supporting regions to those for the
full data (section 3a) result from a large overlap in cluster pop-
ulations. For soundings in the full and thunderstorm-
supporting environment sets, 73% of the raw data and 72% of
the transformed data have the same cluster assignments.

4. Application to model verification

Model-analyzed and forecast vertical thermodynamic profiles
in the boundary layer are typically biased due to the imperfect
approximations used in their turbulence parameterizations
(e.g., Bright and Mullen 2002; Burlingame et al. 2017; Cohen
et al. 2015, 2017; Coniglio et al. 2013; Evans et al. 2018; Hu et al.
2010; Stensrud and Weiss 2002). Such biases are not constant
across environments, however. For example, internal SPC eval-
uations of pre-implementation GFS releases have long indi-
cated that the model overparameterizes turbulent vertical
mixing in unstable warm-season, thunderstorm-supporting envi-
ronments, particularly near drylines in the central United States
(not shown). However, most studies use subjective data stratifi-
cations}such as by geography, surface-based instability magni-
tude, and/or the presence of a capping inversion (e.g., Coniglio
et al. 2013; Evans et al. 2018; Nevius and Evans 2018)}to docu-
ment biases in model-analyzed and forecast vertical thermody-
namic profiles in the boundary layer.

Here, we use the full-dataset clusters from section 3a for
the raw and transformed data to verify short-range Global
Forecast System (GFS) version 15.1 model forecast soundings
for the May–November 2019 period. In GFS version 15.1, re-
leased in 2019 (Maxson 2019) and superseded by GFS version
16 in March 2021 (Farrar 2021), turbulent vertical mixing is
parameterized using a hybrid eddy-diffusivity (ED), counter-
gradient (CG), and mass-flux (MF) approach (Han et al.
2016). The EDmethod, which applies to stable conditions, pa-
rameterizes turbulent mixing locally (i.e., only between adja-
cent vertical levels). The CG method, which applies to weakly
unstable conditions, mimics nonlocal vertical transport by
large eddies through a parameterized countergradient trans-
port from low to high values. The MF method, which applies
to strongly unstable conditions, mixes nonlocally by mathe-
matically relating turbulent mixing to the vertical transport
accomplished by entraining surface thermals. Given this sta-
bility-dependent formulation for parameterizing turbulent
vertical mixing, we hypothesize that cluster-mean verification
statistics (e.g., bias for temperature and dewpoint forecasts)
for the transformed sounding data}which largely stratify by
meteorological phenomena}will better elucidate environ-
ment-specific model biases than will verification statistics for
the raw sounding data}which largely stratify by latitude and
the time of year.

The verification statistic considered herein is bias, defined
as model minus observation (taken to approximate truth) and
averaged over each cluster (here representing those derived
from the full rather than thunderstorm-supporting environ-
ment dataset). Bias is computed for four forecast hours, 0, 12,
24, and 36 h, separately for 0000 and 1200 UTC observations.

Cluster-mean results are presented for both the raw and
transformed data to further demonstrate the utility of the
sounding-transformation, dimension-reduction, and clustering
process.

The cluster-mean bias curves for the transformed sounding
data have more pronounced shape differences than do those
for the raw sounding data. The 0000 and 1200 UTC–verifying
Cluster-1 and Cluster-2 mean temperature and dewpoint
biases have similar shapes, albeit with different magnitudes,
when considering the raw sounding data except for the
1200 UTC cluster-mean dewpoint biases (Figs. 14 and 15a–d).
For example, the 0000 UTC–verifying Cluster-1 and Cluster-2
mean dewpoint bias profiles exhibit an increasingly large moist
bias with altitude, with the Cluster-1 mean dewpoint bias be-
ing 0.58–18C larger than that with Cluster 2 (Figs. 14a–d). Like-
wise, the 1200 UTC–verifying Cluster-1 and Cluster-2 mean
temperature bias profiles are both cold-biased throughout the
column, with the Cluster-1 mean temperature bias being 0.58C
warmer than with Cluster 2 (Figs. 15a–d).

Conversely, the 0000 and 1200 UTC–verifying Cluster-1
and Cluster-2 mean temperature and dewpoint bias profiles
have different shapes when considering the transformed
sounding data, with reduced overlap between 25th and 75th
percentile temperature and dewpoint values for each cluster
(shading in Figs. 14 and 15) as compared to the raw sounding
data. This is most notable for cluster-mean dewpoint, with the
0000 UTC–verifying Cluster 1 and 1200 UTC–verifying Clus-
ter 1 exhibiting increasingly large moist biases with altitude
and forecast lead time that are not shared by the 0000 UTC–
verifying Cluster 2 and 1200 UTC–verifying Cluster 2 (Figs. 14
and 15e–h). The increasingly large moist bias with altitude likely
results from the model’s inability to accurately represent the alti-
tude and sharpness of the strong inversion that often occurs atop
the boundary layer in the semiarid environments that dominate
these clusters’ populations (e.g., Evans et al. 2018). Different
bias-profile shapes are also seen with the cluster-mean tempera-
ture bias profiles below 1 km AGL for 0000 UTC–verifying fore-
casts, with Cluster-1 cold biased in the mean by up to 18C and
Cluster-2 near-zero biased in the mean over this layer (solid
curves in Figs. 14e–h).

Altogether, these limited results suggest that the sounding
transformation and clustering method introduced in this study
has promise for facilitating environment-specific forecast veri-
fication and subsequent model development, testing, and eval-
uation activities.

5. Conclusions

This study introduces a novel method to transform, dimen-
sionally reduce, and cluster observed soundings to aid in ob-
jectively identifying boundary layer sounding structures. This
method involves first interpolating soundings at a common
analysis time (0000 or 1200 UTC) to a uniform height AGL
grid, then subtracting the dry adiabat that extends upward
from the surface parcel’s air temperature from both the tem-
perature and the dewpoint at all altitudes. Both raw (or un-
transformed) and transformed soundings are clustered using
k-means clustering in the phase space of their respective
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leading EOFs, with two clusters retained for each data at both
analysis times based on a silhouette-score analysis.

Transforming the soundings prior to clustering them allows
for the resulting clusters to represent distinct boundary layer
structures instead of climatological airmass characteristics as
is seen in the clusters derived from the non-transformed data.
Specifically, 0000 and 1200 UTC cluster-mean profiles derived
from the raw data are distinguished primarily by differences in
the temperature and dewpoint profiles, with Cluster-1 profiles
preferentially occurring during the warm season (Figs. 5a,b and

8) and being substantially warmer and moister than Cluster 2
(Figs. 6 and 9). Conversely, 0000 UTC cluster-mean profiles de-
rived from transformed sounding data better represent common
boundary layer structures, such as vertically mixed layers, and
exhibit greater geographical and temporal variability (Figs. 6–8
and 10–12). It is less effective at reducing the latitudinal and
seasonal stratifications within the raw data at 1200 UTC how-
ever, although the reasons as to why are unclear and warrant
further research. The transformation method’s ability to distin-
guish boundary layer structures in a sounding climatology is

FIG. 14. Cluster-mean bias, where bias is defined as model minus observations, for GFS (a),(e) 0-; (b),(f) 12-; (c),(g) 24-; and
(d),(h) 36-h forecasts valid at 0000 UTC using the full sounding dataset. (top) The results for the raw sounding data and (bottom) the re-
sults for the transformed sounding data. Cluster 1 is depicted in red and Cluster 2 is depicted in blue, with temperature depicted in solid
lines and dewpoint depicted in dashed lines, for all panels. Semitransparent shading indicates the values between the 25th and 75th per-
centile of each cluster’s respective distributions.

FIG. 15. As in Fig. 14, but using 1200 UTC observed soundings.
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only slightly reduced when the variability in the input data
is reduced, such as is done herein to isolate soundings in
thunderstorm-supporting environments before clustering.
The transformation method’s efficacy allows for the derived
clusters to be used in applications ranging from model verifica-
tion, wherein model biases are often variable across meteoro-
logical environments, to validating remote sensing instrument
retrieval algorithms (e.g., temperature retrievals from micro-
wave radiometers).

Although the method introduced here shows promise for
isolating environmental variability within large sounding data-
sets, there are nevertheless several limitations that must be
kept in mind. First, the sounding data considered in this study
only cover the 11 months from early May 2019 to late March
2020 over North America. It is possible that the method’s effi-
cacy or its outputs (e.g., the optimal number of EOFs or clus-
ters to retain) would be different if a larger, more variable
input dataset is used. Second, the method is limited by as-
sumptions inherent to its compression and clustering algo-
rithms, most importantly the Euclidean distance formulation
of the silhouette score. Other compression or clustering ap-
proaches may produce different results. Third, choices such as
limiting our analysis to the lowest 3 km AGL (instead of con-
sidering the entire troposphere) or defining thunderstorm-
supporting environments based on SPC convective outlooks
(which cover a 24-h period, such that a sounding may not truly
be in a thunderstorm-supporting environment at both of the
two times considered) are somewhat arbitrary. Here, too,
other approaches may produce different results. Additional
research is necessary to evaluate these limitations and evalu-
ate the method’s efficacy for applications beyond sounding
classification and forecast verification.

Acknowledgments. This research was sponsored by the
NOAA Testbeds program under Award NA18NWS4680062.
Fruitful discussions with Gretchen Mullendore and Caitlyn
Mensch are greatly appreciated. Constructive feedback from
three anonymous reviewers and Weather and Forecasting Chief
Editor Gary Lackmann helped to improve the manuscript.

Data availability statement. The observed and model
soundings used in this study, as well as Python code to trans-
form the height coordinate and temperature formulation in
both datasets, can be obtained from a Zenodo repository at
https://zenodo.org/record/7097496.

REFERENCES

Blue Hill Observatory and Science Center, 2021: A brief history
of the Blue Hill Meteorological Observatory. Accessed 10 July
2023, https://bluehill.org/about/.

Bright, D. R., and S. L. Mullen, 2002: The sensitivity of the nu-
merical simulation of the southwest monsoon boundary layer
to the choice of PBL turbulence parameterization in MM5.
Wea. Forecasting, 17, 99–114, https://doi.org/10.1175/1520-
0434(2002)017,0099:TSOTNS.2.0.CO;2.

Burlingame, B. M., C. Evans, and P. J. Roebber, 2017: The influ-
ence of PBL parameterization on the practical predictability

of convection initiation during the Mesoscale Predictability
Experiment (MPEX). Wea. Forecasting, 32, 1161–1183,
https://doi.org/10.1175/WAF-D-16-0174.1.

Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks,
2015: A review of planetary boundary layer parameterization
schemes and their sensitivity in simulating southeastern U.S.
cold season severe weather events. Wea. Forecasting, 30, 591–
612, https://doi.org/10.1175/WAF-D-14-00105.1.

}}, }}, }}, }}, and I. L. Jirak, 2017: Evaluation of multi-
ple planetary boundary layer parameterization schemes in
southeast U.S. cold season severe thunderstorm environ-
ments. Wea. Forecasting, 32, 1857–1884, https://doi.org/10.
1175/WAF-D-16-0193.1.

Coniglio, M. C., J. Correia, P. T. Marsh, and F. Kong, 2013: Veri-
fication of convection-allowing WRF Model forecasts of the
planetary boundary layer using sounding observations. Wea.
Forecasting, 28, 842–862, https://doi.org/10.1175/WAF-D-12-
00103.1.

Davis, R. E., 1976: Predictability of sea surface temperature and
sea level pressure anomalies over the North Pacific Ocean.
J. Phys. Oceanogr., 6, 249–266, https://doi.org/10.1175/
1520-0485(1976)006,0249:POSSTA.2.0.CO;2.

Evans, C., S. J. Weiss, I. L. Jirak, A. R. Dean, and D. S. Nevius,
2018: An evaluation of paired regional/convection-allowing
forecast vertical thermodynamic profiles in warm-season,
thunderstorm-supporting environments. Wea. Forecasting, 33,
1547–1566, https://doi.org/10.1175/WAF-D-18-0124.1.

Farrar, M., 2021: Service change notice 21-20 (updated). National
Weather Service Headquarters, Silver Spring, MD, 13 pp.,
https://www.weather.gov/media/notification/pdf2/scn21-20_
gfsv16.0_aac.pdf.

Forgy, E. W., 1965: Cluster analysis of multivariate data: Efficiency
vs. interpretability of classifications. Biometrics, 21, 768–769.

Fovell, R. G., and A. Gallagher, 2020: Boundary layer and surface
verification of the High-Resolution Rapid Refresh, version 3.
Wea. Forecasting, 35, 2255–2278, https://doi.org/10.1175/WAF-
D-20-0101.1.

Giangrande, S. E., D. Wang, and D. B. Mechem, 2020: Cloud
regimes over the Amazon basin: Perspectives from the
GoAmazon2014/15 campaign. Atmos. Chem. Phys., 20,
7489–7507, https://doi.org/10.5194/acp-20-7489-2020.

Han, J., M. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher,
and C. S. Bretherton, 2016: Implementation in the NCEP
GFS of a Hybrid Eddy-Diffusivity Mass-Flux (EDMF)
boundary layer parameterization with dissipative heating and
modified stable boundary layer mixing. Wea. Forecasting, 31,
341–352, https://doi.org/10.1175/WAF-D-15-0053.1.

Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evalua-
tion of three planetary boundary layer schemes in the WRF
Model. J. Appl. Meteor. Climatol., 49, 1831–1843, https://doi.
org/10.1175/2010JAMC2432.1.

Jensen, A. A., A. M. Thompson, and F. J. Schmidlin, 2012: Classi-
fication of Ascension Island and natal ozonesondes using
self-organizing maps. J. Geophys. Res., 117, D04302, https://
doi.org/10.1029/2011JD016573.

Kohonen, T., 1995: Self-Organizing Maps. Springer Series in In-
formation Sciences, Vol. 30, Springer-Verlag, 362 pp.

Lloyd, S. P., 1982: Least squares quantization in PCM. IEEE
Trans. Info. Theory, 28, 129–136, https://doi.org/10.1109/TIT.
1982.1056489.

Lorenz, E. N., 1956: Empirical orthogonal functions and statisti-
cal weather prediction. Statistical Forecasting Project Scien-
tific Rep. 1, MIT Department of Meteorology, 52 pp.,

B L OUN T E T A L . 1155JULY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:22 PM UTC

https://zenodo.org/record/7097496
https://bluehill.org/about/
https://doi.org/10.1175/1520-0434(2002)017<0099:TSOTNS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0099:TSOTNS>2.0.CO;2
https://doi.org/10.1175/WAF-D-16-0174.1
https://doi.org/10.1175/WAF-D-14-00105.1
https://doi.org/10.1175/WAF-D-16-0193.1
https://doi.org/10.1175/WAF-D-16-0193.1
https://doi.org/10.1175/WAF-D-12-00103.1
https://doi.org/10.1175/WAF-D-12-00103.1
https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2
https://doi.org/10.1175/WAF-D-18-0124.1
https://www.weather.gov/media/notification/pdf2/scn21-20_gfsv16.0_aac.pdf
https://www.weather.gov/media/notification/pdf2/scn21-20_gfsv16.0_aac.pdf
https://doi.org/10.1175/WAF-D-20-0101.1
https://doi.org/10.1175/WAF-D-20-0101.1
https://doi.org/10.5194/acp-20-7489-2020
https://doi.org/10.1175/WAF-D-15-0053.1
https://doi.org/10.1175/2010JAMC2432.1
https://doi.org/10.1175/2010JAMC2432.1
https://doi.org/10.1029/2011JD016573
https://doi.org/10.1029/2011JD016573
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489


https://eapsweb.mit.edu/sites/default/files/Empirical_Orthogonal_
Functions_1956.pdf.

Maxson, B., 2019: Service change notice 19-40. National Weather
Service Headquarters, Silver Spring, MD, 8 pp., https://www.
weather.gov/media/notification/pdf2/scn19-40gfs_v15_1.pdf.

Monahan, A. H., J. C. Fyfe, M. H. P. Ambaum, D. B. Stephenson,
and G. R. North, 2009: Empirical orthogonal functions: The
medium is the message. J. Climate, 22, 6501–6514, https://doi.
org/10.1175/2009JCLI3062.1.

Nevius, D. S., and C. Evans, 2018: The influence of vertical advec-
tion discretization in the WRF-ARW Model on capping inver-
sion representation in warm-season, thunderstorm-supporting
environments. Wea. Forecasting, 33, 1639–1660, https://doi.org/
10.1175/WAF-D-18-0103.1.

North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982:
Sampling errors in the estimation of empirical orthogonal
functions. Mon. Wea. Rev., 110, 699–706, https://doi.org/10.
1175/1520-0493(1982)110,0699:SEITEO.2.0.CO;2.

Nowotarski, C., and A. Jensen, 2013: Classifying proximity sound-
ings with self-organizing maps toward improving supercell
and tornado forecasting. Wea. Forecasting, 28, 783–801,
https://doi.org/10.1175/WAF-D-12-00125.1.

Obukhov, A. M., 1947: Statistically homogeneous fields on a
sphere. Usp. Mat. Nauk, 2, 196–198.

Pandas Development Team, 2023: pandas-dev/pandas: Pandas
(v2.0.1). Zenodo, accessed 10 July 2023, https://doi.org/10.5281/
zenodo.7857418.

Rousseeuw, P. J., 1987: Silhouettes: A graphical aid to the interpre-
tation and validation of cluster analysis. J. Comput. Appl.
Math., 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7.

Stensrud, D. J., and S. J. Weiss, 2002: Mesoscale model ensemble
forecasts of the 3 May 1999 tornado outbreak. Wea. Forecast-
ing, 17, 526–543, https://doi.org/10.1175/1520-0434(2002)017
,0526:MMEFOT.2.0.CO;2.

Stith, J. L., and Coauthors, 2018: 100 years of progress in atmospheric
observing systems. A Century of Progress in Atmospheric and
Related Sciences: Celebrating the American Meteorological Soci-
ety Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc.,
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0006.1.

Storm Prediction Center, 2022: SPC products. Accessed 10 July
2023, https://www.spc.noaa.gov/misc/about.html.

Wilks, D. S., 2019: Statistical Methods in the Atmospheric Science.
4th ed. Elsevier, 840 pp.

WEATHER AND FORECAS T ING VOLUME 381156

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:22 PM UTC

https://eapsweb.mit.edu/sites/default/files/Empirical_Orthogonal_Functions_1956.pdf
https://eapsweb.mit.edu/sites/default/files/Empirical_Orthogonal_Functions_1956.pdf
https://www.weather.gov/media/notification/pdf2/scn19-40gfs_v15_1.pdf
https://www.weather.gov/media/notification/pdf2/scn19-40gfs_v15_1.pdf
https://doi.org/10.1175/2009JCLI3062.1
https://doi.org/10.1175/2009JCLI3062.1
https://doi.org/10.1175/WAF-D-18-0103.1
https://doi.org/10.1175/WAF-D-18-0103.1
https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
https://doi.org/10.1175/WAF-D-12-00125.1
https://doi.org/10.5281/zenodo.7857418
https://doi.org/10.5281/zenodo.7857418
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1175/1520-0434(2002)017<0526:MMEFOT>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0526:MMEFOT>2.0.CO;2
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0006.1
https://www.spc.noaa.gov/misc/about.html

